
CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

Lecture 8: Hashing and Hash Tables

Reading materials
Dale, Joyce, Weems: 10.6
OpenDSA: Chapter 7
Liang: only in Comprehensive edition, chapter 28

Topics Covered

1 Introduction to Hash Tables 2
1.1 Motivation . 2
1.2 What are hash tables? . 2

2 Using Java Provided Hash Tables 3
2.1 Map<K,V> interface . 3
2.2 Hashtable<K,V> class . 4
2.3 HashMap<K,V> class . 4
2.4 What does really happen? . 4

3 Implementing Hash Tables 4
3.1 (key, value) Node . 5
3.2 Hash Function . 5

3.2.1 Properties of a Good Hash Function . 6
3.2.2 Good Hash Functions . 7

3.3 Collision Resolution ... 9
3.4 Rehashing . 9

1

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

1 Introduction to Hash Tables

1.1 Motivation

We want a data structure that allows us to access existing elements and insert new elements
in O(1) operations. Is it possible? Theoretically, yes, in practice, we can get close, but there
is always a trade off between memory and time usage.

1.2 What are hash tables?

A hash table is a look-up table that, when designed well, has nearly O(1) average running
time for a find or insert operation. More precisely, a hash table is an array of fixed size
containing data items with unique keys, together with a function called a hash function
that maps keys to indexes in the table/array.
Example:
If the keys are integers and the hash table is an array of size 127, then the function
hash(key), defined by

hash(key) = key % 127

maps numbers to their modulus in the finite field of size 127.
Notice:

• for each key (a number in the above example) there is only one possible value of
hash(key),

• multiple keys may have the same value of hash(key) (i.e. the hash function is not
one-to-one):

– for example the keys 10, 137, and 264 all map to the same array location because
10 % 127 = 137 % 127 = 264 % 127 = 10.

Conceptually, a hash table is a very general structure: it is a table H containing a collection
of (key, value) pairs with the property that H may be indexed by the key itself. We usually
reference an element of an array A by writing something like A[i], using an integer index
value i. With a hash table, we replace the index value "i" by the key contained in location
i. For example, if H contains the set of pairs

("Italy", "Rome")
("Japan", "Nagano")
("Canada", "Banff")
("France", "Paris")
("Belgium", "Bruges")
("Hungary", "Budapest")
("Portugal", "Porto")

2

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

then we could hypothetically write a statement such as

print H["Italy"]

and Rome would be printed, or

print H["Portugal"]

and Porto would be printed (these, of course, are not valid Java statements).
As long as we know the key associated with the data item, we can access it in the table in,
at least theoretically, O(1) time. Similarly, when we want to insert a new data item into the
table, we simply determine its key and add it to the table at the location H[key].

Problem: Well, sometimes we cannot do this, can we? Think of trying to add another pair
(�Italy�, �Florence�) to the above table.

2 Using Java Provided Hash Tables

Java provides a Map interface and several possible implementations of it. When we use those
interfaces and classes we need to make sure that a good hash function is implemented for
the objects that are used as keys in the hash table.

2.1 Map<K,V> interface

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html

interface Map<K,V>

An object that maps keys of type K to values of type V (K and V are generic types,
this is a good example of using non-standard generic letters that have their own meaning
in the Map structure - you can use whatever letters you wish when you implement your own
hash tables). A map cannot contain duplicate keys; each key can map to at most one
value.
There are several methods in the Map interface that we are going to be using and you should
be familiar with:

V put(K key, V value) Associates the specified value with the specified key in this map.
Returns the previous value associated with key, or null if there was no mapping
for key.

V get(Object key) Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.

V remove(Object key) Removes the mapping for a key from this map if it is present. Re-
turns the previous value associated with key, or null if there was no mapping for
key.

Set<K> keySet() Returns a Set view of the keys contained in this map.

3

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

2.2 Hashtable<K,V> class

http://docs.oracle.com/javase/8/docs/api/java/util/Hashtable.html

class Hashtable<K,V> implements Map<K,V>

This class implements a hash table, which maps keys to values. Any non-null object can be
used as a key or as a value.
To successfully store and retrieve objects from a hash table, the objects used as keys must
implement the hashCode method and the equals method.

Source Code: see Capitals.java for an example how the Hashtable class can be used
with String keys and String values.

2.3 HashMap<K,V> class

http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

class Hashtable<K,V> implements Map<K,V>

This class implements a hash table, which maps keys to values. The HashMap class is
roughly equivalent to Hashtable, except that it is unsynchronized and permits nulls.
To successfully store and retrieve objects from a hash table, the objects used as keys must
implement the hashCode method and the equals method.

2.4 What does really happen?

Java provided hash tables hide the implementation details (as they should) and it is not
clear really how the values are stored and retrieved. There are possibly ”infinitely” many
different keys - how can all these values be stored in a table?
In the next section we will try to answer these questions.

3 Implementing Hash Tables

What is used for storing a hash table? Usually arrays are used to store hash tables.
(But three might be other structures stores within each locations in the array.)

What is the type of such array? The answer to this question depends on the imple-
mentation choices that are made in answer to questions below. In general, a single array
location has to contain the (key, value) pair. Sometimes a single array location can store
multiple (key, value) pairs.

4

http://docs.oracle.com/javase/8/docs/api/java/util/Hashtable.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

How is the location in the array decided based on the key? This is where the hash
function mentioned in Section 1 comes in. Hash function is applied to the key and it returns
the index of an array location in which the given (key, value) pair should be stored. The
details of different hash functions will be discussed below.

What happens if hash function puts two different keys into the same array lo-
cation? A collision occurs when two different keys are sent to the same array location.
Below, we will discuss several different approaches of collision resolution (deciding what
to do when collision occurs).

Can the array be full and what do we do when it is? The array can certainly become
too small to store all the data. Rehashing is the technique used to create a new array and
copy all the values to a new array.

3.1 (key, value) Node

As we did with linked lists, we will combine the key and the value into a node object. De-
pending on the choices made for collision resolution, such a node may or may not need to
store a reference to another node. But in either situation, the node needs to store the key
and the value.

class HashNode < K, V > {

private K key;
private V value;
...

}

THINK ABOUT: Why do we need to store the key in addition to the value, once we find the
correct location for the pair based on the key?

3.2 Hash Function

Based on unique keys we need to be able to compute the location in the array (or hash table)
at which the given (key, value) combination can be stored. Why can’t we just use the key
itself as an index? Well, it might be too big, negative or not an integer. We use a hash
function (called hashCode() in Java) to decide the location. What should such hash function
do?

hash(key) = ?

5

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

3.2.1 Properties of a Good Hash Function

A hash function is supposed to chop up its argument and construct a value out of the chopped
up little pieces. Good hash functions make the original key hard to reconstruct from the
computed hash value. To be good, a hash function should

• be easy to compute (for speed),

• repeatable and

• randomly disperse keys evenly throughout the table, making sure that no two keys
map to the same index.

Easy to compute generally means that the function is an O(1) operation, practically inde-
pendent of the input size and hash table size. For example, if the function tried to find all of
the prime factors of a given number in order to compute the hash function, this would not
be easy to compute. Being easy to compute is a fuzzy concept.
Repeatable means that making two calls to a hash function with the same argument should
produce the same result. It would be much easier to compute values quickly and disperse
them well if you could use random numbers, but there is not way to recover the data from
the hash table once it is saved there.
Dispersing the keys evenly means that there is as much distance between successive pairs
of keys as possible. For example, if the hash table is of size 1000 and there are 200 keys in
it, they should each be about five addresses apart from their neighbors.

In principle, if the set of keys is finite and known in advance, we can construct a perfect
hash function, one that maps each key to a unique index. In practice, the set of keys is
rarely known at the time of writing the program and may not be finite.

Example (bad hash function): If we have the integer keys

112, 46, 75, 515

we would want a function that maps them to the numbers0,1,2, and 3 uniquely. Suppose
that hash(key) is a function that returns the sum of the decimal digits in the key and if that
sum has more than one digit itself we add them together again . In this case we have

hash(112) = 1 + 1 + 2 = 4,
hash(46) = hash(4 + 6) = hash(10) = 1,
hash(75) = h(7 + 5) = hash(12) = 3, and
hash(515) = h(5 + 1 + 5) = hash(11) = 2.

This is a perfect hash function for the above four keys. But it is very poor hash function for
larger number of keys. Why is it bad:

• It matches all keys to one digit indexes of an array. What if we have 250 keys?

• It completely ignores information about position of digits in the key so 155, 515, 551
are all assigned the same index.

6

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

3.2.2 Good Hash Functions

Well, the definition of a good hash function depends on what it is used for and what the
size of the table is. There are a lot of different methods of computing the index based on an
integer and of computing the integer based on the object itself (assuming the object is not
the integer to begin with).
Java provides a method called hashCode() for all its classes that can be used as keys into
hash tables (String, Integer, ...). For example, the hashCode() method in the String class is
implemented as follows:

1 /∗∗
2 ∗ Returns a hash code for th i s s t r ing . The hash code for a
3 ∗ String o b j e c t i s computed as
4 ∗ s [0]∗31^(n−1) + s [1]∗31^(n−2) + . . . + s [n−1]
5 ∗ using integer arithmetic , where s [i] i s the
6 ∗ i ’ th character o f the string , n i s the length of
7 ∗ the string , and ^ indicates exponentiation .
8 ∗ (The hash value of the empty s tr ing i s zero .)
9 ∗

10 ∗ @return a hash code value for th i s o b j e c t .
11 ∗/
12 public int hashCode () {
13 int h = hash ;
14 i f (h == 0 && value . length > 0) {
15 char val [] = value ;
16

17 for (int i = 0 ; i < value . length ; i ++) {
18 h = 31 ∗ h + val [i] ;
19 }
20 hash = h ;
21 }
22 return h ;
23 }

The Object class has the following documentation/implementation for the hashCode() method
(remember that every class inherits the hashCode() method from the Object class):

1 /∗∗
2 ∗ Returns a hash code value for the o b j e c t . This method i s supported for
3 ∗ the b e n e f i t o f hash tables such as those provided by java . u t i l .HashMap.
4 ∗
5 ∗ The general contract o f hashCode i s :
6 ∗ − Whenever i t i s invoked on the same o b j e c t more than once during
7 ∗ an execution of a Java application , the hashCode method
8 ∗ must c o n s i s t e n t l y return the same integer , provided no information
9 ∗ used in equals comparisons on the o b j e c t i s modified .

10 ∗ This in teger need not remain cons i s t en t from one execution of an
11 ∗ applicat ion to another execution of the same applicat ion .
12 ∗ − I f two o b j e c t s are equal according to the equals (Object)
13 ∗ method , then cal l ing the hashCode method on each of
14 ∗ the two o b j e c t s must produce the same integer r e su l t .
15 ∗ − I t i s not required that i f two o b j e c t s are unequal ,
16 ∗ according to the java . lang . Object#equals (java . lang . Object)
17 ∗ method , then cal l ing the hashCode method on each of the
18 ∗ two o b j e c t s must produce d i s t i n c t in teger r e s u l t s . However , the
19 ∗ programmer should be aware that producing d i s t i n c t in teger r e s u l t s
20 ∗ f o r unequal o b j e c t s may improve the performance of hash tables .
21 ∗

7

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

22 ∗ As much as i s reasonably pract ical , the hashCode method defined by
23 ∗ c lass Object does return d i s t i n c t in t egers for d i s t i n c t
24 ∗ o b j e c t s . (This i s t y p i c a l l y implemented by converting the internal
25 ∗ address o f the o b j e c t into an integer , but th i s implementation
26 ∗ technique i s not required by the Java programming language .)
27 ∗
28 ∗ @return a hash code value for th i s o b j e c t .
29 ∗ @see java . lang . Object#equals (java . lang . Object)
30 ∗ @see java . lang . System#identityHashCode
31 ∗/
32

33 public native int hashCode () ;

For your own classes, you should implement your own hashCode() method if the objects of
the class can be used as keys into a hash table.
The computation of a hash value based on an integer value often uses some computation
with a prime number followed by modulus operation that used the size of the table.
Assume that N is the number of elements that can be stored in the hash table. The following
are considered to be pretty good hash functions for integer keys (assuming that the keys are
roughly uniformly distributed):

hash(key) = key % N;

double goldenRatio = 0.6180339887;
hash(key) = (int)(floor(N ∗ (key ∗ goldenRatio − floor(key ∗ goldenRatio)))

If we are starting with a String object as the key, we need to convert the characters into
an integer value first, and then apply an integer hash function (one of the ones above, for
example). To get an integer from a String, we need to use ALL of the characters and their
position information to obtain the best results. Given a String S, some examples of such
conversion are:

int num = 0;
for (int i = 0; i < S.length(); i++)
{

num = 37*num + (int) S.charAt(i);

}

int num = 0;
int primePow = 37;
for (int i = 0; i < S.length(); i++)
{

num += primePow * (int) S.charAt(i);
primePow = primePow*37;

}

8

CSCI-UA 102.04
Lecture 8: Hashing and Hash Tables

Joanna Klukowska
joannakl@cs.nyu.edu

3.3 Collision Resolution ...

... or what to do when two keys are hashed to the same location in the hash table.
There are different ways of handling situations in which two keys map to the same location
(called collision):

• open addressing (also known as closed hashing) - finds an alternative location for the
(key, value) pair, if the first location is occupied,

• closed addressing (also known as open hashing) - allows multiple (key, value) pairs
to be stored in a single array location.

Each of these two have multiple ways of being implemented. Here are examples of how they
can be handled.

Open addressing:

• linear probing - put the (key, value) pair in the next available location, if that is
occupied, try the next one and so on,

• quadratic probing - the the (key, value) pair in the next available location, if that is
occupied, the the one four spaces away, then nine spaces away, and so on (use a square
of how many times we tried to put it in the next location).

In both of these, we need to handle retrieving elements from the hash table in a special
way - they may not be in the locations computed by the hash value of the key. If the (key,
value) pair is not found at the location computed by the hash function, we have to check all
the other places in which the collision resolution method might have place them.

Closed addressing:

• separate chaining - put each (key, value) pair that maps to the same array location
in a linked list that starts at that array location. If implemented well, the linked lists
remain always very short.

3.4 Rehashing

To guarantee good performance, the load factor (number of elements divided by the size of
the array) should be less than 1 (often it is expected to be below 0.75). When array becomes
too full (i.e. the load factor exceeds some predefined value), all the values stored in the table
need to be rehashed to a larger table.

9

	1 Introduction to Hash Tables
	1.1 Motivation
	1.2 What are hash tables?

	2 Using Java Provided Hash Tables
	2.1 Map<K,V> interface
	2.2 Hashtable<K,V> class
	2.3 HashMap<K,V> class
	2.4 What does really happen?

	3 Implementing Hash Tables
	3.1 (key, value) Node
	3.2 Hash Function
	3.2.1 Properties of a Good Hash Function
	3.2.2 Good Hash Functions

	3.3 Collision Resolution ...
	3.4 Rehashing

