
CSCI-UA 102, Spring 2018
Project 3

Joanna Klukowska
joannakl@cs.nyu.edu

Project 3: WayFinder: A Recursive Puzzle Solver
Due date: March 29, 11:55PM EST.

You may discuss any of the assignments with your classmates and tutors (or anyone else) but all work for all assignments must be
entirely your own . Any sharing or copying of assignments will be considered cheating (this includes posting of partial or complete
solutions on Piazza, GitHub or any other public forum). If you get significant help from anyone, you should acknowledge it in
your submission (and your grade will be proportional to the part that you completed on your own). You are responsible for
every line in your program: you need to know what it does and why. You should not use any data structures and features of Java
that have not been covered in class (or the prerequisite class). If you have doubts whether or not you are allowed to use certain
structures, just ask your instructor.

The goal of this project is to implement a program that finds all solutions to a number puzzle. The solution that you will implement has
to use a recursive algorithm to find all the ways through the puzzle.

The puzzle uses an array of positive integers. The objective is to find a path from index zero to the last index in the array. At each step
we need to know the distance to be traveled and the direction. Each entry in the array is a number indicating the distance to be traveled
on this particular leg of the path. The player (your program) needs to decide the direction (if the move should be made to the right or to
the left).

Here is an example. In each step the bold number indicates the current location. The starting position is always at index 0.

starting array 3 6 4 1 3 4 2 5 3 0

step 1: move right 3 6 4 1 3 4 2 5 3 0

step 2: move left 3 6 4 1 3 4 2 5 3 0

step 3: move right 3 6 4 1 3 4 2 5 3 0

step 4: move right 3 6 4 1 3 4 2 5 3 0

step 5: move left 3 6 4 1 3 4 2 5 3 0

step 6: move right 3 6 4 1 3 4 2 5 3 0

finished 3 6 4 1 3 4 2 5 3 0

This puzzle has more than this one solution. The directions for each step can be altered to produce other solutions.

Objectives

The goal of this programming project is for you to master (or at least get practice on) the following tasks:

• designing a program from scratch (deciding what classes and method should be part of the program)
• writing recursive functions

Start early! This project may not seem like much coding, but debugging and testing always takes time.

For the purpose of grading, your project should be in the package called project3. This means that each of your submitted
source code files should start with a line:
package project3;

These materials are licensed under CC BY-SA 4.0 license. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSCI-UA 102, Spring 2018
Project 3

Joanna Klukowska
joannakl@cs.nyu.edu

Program design

Unlike in the previous two projects, the class design in this project is (almost) entirely up to you. You have to decide what classes should
be written, what methods they should contain and how the classes should interact.

But there are some restrictions as to the naming of the final program and program input and output.

The name of your program (i.e., the class with the main method) should be WayFinder.

The algorithm solving the puzzle must be recursive.

Input

The program should be given the array to work with via command line arguments (this is the args array parameter to the main
method). This means that the program should be run using, for example:

java WayFinder 3 6 4 1 3 4 2 5 3 0

The command line arguments represent the values for the array. Restrictions:

• all values have to be non-negative integers in the range of 0 to 99 inclusive
• the last value has to be zero

If the program is executed with non-existent or invalid command line arguments, it should print an error message and terminate.

The program should not be interactive. All input should be provided as the command line arguments. The user should not be prompted
for any additional information.

Results/Output

The program has to calculate and display all possible solutions to the puzzle or determine that no such solutions exist. The output
of the program should match the format described below exactly (the correctness of the solutions will be determined based on textual
matching of the program’s output to the correct solution).

The output for multiple paths through the puzzle should be separated by a single blank line. The last line (after all the paths are printed)
should conclude the total number of paths that can be successfully taken to solve the puzzle.

For each path, every step through the puzzle has to be displayed. For each step, the entire array should be printed and the current location
should be indicated with either L or R indicating which direction the next step is taken in.

Each value in the array should be printed within a 2 digit field (right aligned) with additional space, or character L or R (for the current
value) following the number. The values should be separated by the commas and spaces immediately following the commas. Thhe entire
array should be surrounded by square brackets.

The format of a 6-element array should be:

[DDS,SDDC,SDDS,SDDS,SDDS,SDDS]

where D stands for a digit, S stands for a space character, C stands for a character (either L or R) indicating the direction. Note that there
should only be one value in the entire array that is followed by the direction character!

Here are a few examples:

[3 , 4 , 11 , 2L, 25 , 0] means that the current location is at index 3 and the next move will be two to the left

[3 , 4 , 11 , 2R, 25 , 0] means that the current location is at index 3 and the next move will be two to the right

[3R, 4 , 11 , 2 , 25 , 0] means that the current location is at index 0 and the next move will be three to the left

Program execution examples

Here are a few examples of the program execution.

Program run using:

java WayFinder 3 -2 9 0

These materials are licensed under CC BY-SA 4.0 license. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSCI-UA 102, Spring 2018
Project 3

Joanna Klukowska
joannakl@cs.nyu.edu

ERROR: the puzzle values have to be positive integers.

Program run using:

java WayFinder 3 6 0 1 3 4 2 5 3 0

No way through this puzzle.

Program run using:

java WayFinder 2 1 2 0

No way through this puzzle.

Program run using:

java WayFinder 3 6 4 1 3 4 2 5 3 0

[3R, 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1L, 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4R, 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2R, 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3L, 0]
[3 , 6 , 4 , 1 , 3 , 4R, 2 , 5 , 3 , 0]

[3R, 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1R, 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3L, 4 , 2 , 5 , 3 , 0]
[3 , 6R, 4 , 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2 , 5L, 3 , 0]
[3 , 6 , 4R, 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2R, 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3L, 0]
[3 , 6 , 4 , 1 , 3 , 4R, 2 , 5 , 3 , 0]

[3R, 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1R, 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3R, 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2 , 5L, 3 , 0]
[3 , 6 , 4R, 1 , 3 , 4 , 2 , 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2R, 5 , 3 , 0]
[3 , 6 , 4 , 1 , 3 , 4 , 2 , 5 , 3L, 0]
[3 , 6 , 4 , 1 , 3 , 4R, 2 , 5 , 3 , 0]

There are 3 ways through the puzzle.

Program run using:

java WayFinder 6 9 3 10 2 1 5 8 9 1 2 5 4 8 10 7 6 0

[6R, 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5L, 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9R, 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2L, 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9R, 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]

[6R, 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5L, 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9R, 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]

These materials are licensed under CC BY-SA 4.0 license. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSCI-UA 102, Spring 2018
Project 3

Joanna Klukowska
joannakl@cs.nyu.edu

[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2R, 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4L, 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9R, 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]

[6R, 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5R, 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5R, 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6L, 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2L, 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9R, 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]

[6R, 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5R, 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5R, 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6L, 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2R, 5 , 4 , 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9 , 1 , 2 , 5 , 4L, 8 , 10 , 7 , 6 , 0]
[6 , 9 , 3 , 10 , 2 , 1 , 5 , 8 , 9R, 1 , 2 , 5 , 4 , 8 , 10 , 7 , 6 , 0]

There are 4 ways through the puzzle.

Programming Rules

You should follow the rules outlined in the document Code conventions posted on the course website at https://joannakl.
github.io/cs102_s18/notes/CodeConventions.pdf.

You may use any exception-related classes.

You can use an array, ArrayList or any other form of a list implementation provided by Java API. You can use any of the family of
classes representing strings.

Working on This Assignment

You should start right away!

Make sure that at all times you have a working program. You can implement methods that perform one task at a time. This way, if you
run out of time, at least parts of your program will be functioning properly.

You should make sure that your program’s results are consistent with what is described in this specification by running the program on
carefully designed test inputs and examining the outputs produced to make sure they are correct. The goal in doing this is to try to find
the mistakes you have most likely made in your code.

You should backup your code after each time you spend some time working on it. Save it to a flash drive, email it to yourself,
upload it to your Google drive, do anything that gives you a second (or maybe third copy). Computers tend to break just a few
days or even a few hours before the due dates - make sure that you have working code if that happens.

Grading

If your program does not compile or if it crashes (almost) every time it is run, you will get a zero on the assignment.

If the program does not adhere to the specification, the grade will be low and will depend on how easy it is to figure out what the program
is doing.

50 points correctness

These materials are licensed under CC BY-SA 4.0 license. 4

https://joannakl.github.io/cs102_s18/notes/CodeConventions.pdf
https://joannakl.github.io/cs102_s18/notes/CodeConventions.pdf
http://creativecommons.org/licenses/by-sa/4.0/

CSCI-UA 102, Spring 2018
Project 3

Joanna Klukowska
joannakl@cs.nyu.edu

30 points design and the implementation of the classes

20 points proper documentation, program style and format of submission

How and What to Submit

For the purpose of grading, your project should be in the package called project3. This means that each of your submitted
source code files should start with a line:
package project3;

Your should submit all your source code files (the ones with .java extensions only) in a single zip file to Gradescope. The Gradescope
autograder will be available a few days before the assignment due date.

You can produce a zip file directly from Eclipse:

• right click on the name of the package (inside the src folder) and select Export...
• under General pick Archive File and click Next
• in the window that opens select appropriate files and settings:

– in the right pane pick ONLY the files that are actually part of the project, but make sure that you select all files that are
needed

– in the left pane, make sure that no other directories are selected
– click Browse and navigate to a location that you can easily find on your system (Desktop or folder with the course materials

or ...)
– in Options select ”Save in zip format”, ”Compress the contents of the file” and ”Create only selected directories”

• click Finish

These materials are licensed under CC BY-SA 4.0 license. 5

http://creativecommons.org/licenses/by-sa/4.0/

