
jEdit − Stack.java

1 /*

2 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.

3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

4 *

5 * This code is free software; you can redistribute it and/or modify it

6 * under the terms of the GNU General Public License version 2 only, as

7 * published by the Free Software Foundation. Oracle designates this

8 * particular file as subject to the "Classpath" exception as provided

9 * by Oracle in the LICENSE file that accompanied this code.

10 *

11 * This code is distributed in the hope that it will be useful, but WITHOUT

12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

14 * version 2 for more details (a copy is included in the LICENSE file that

15 * accompanied this code).

16 *

17 * You should have received a copy of the GNU General Public License version

18 * 2 along with this work; if not, write to the Free Software Foundation,

19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110−1301 USA.

20 *

21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA

22 * or visit www.oracle.com if you need additional information or have any

23 * questions.

24 */

25

26 package java.util;

27

28 /**

29 * The <code>Stack</code> class represents a last−in−first−out

30 * (LIFO) stack of objects. It extends class <tt>Vector</tt> with five

31 * operations that allow a vector to be treated as a stack. The usual

32 * <tt>push</tt> and <tt>pop</tt> operations are provided, as well as a

33 * method to <tt>peek</tt> at the top item on the stack, a method to test

34 * for whether the stack is <tt>empty</tt>, and a method to <tt>search</tt>

35 * the stack for an item and discover how far it is from the top.

36 * <p>

37 * When a stack is first created, it contains no items.

38 *

39 * <p>A more complete and consistent set of LIFO stack operations is

40 * provided by the {@link Deque} interface and its implementations, which

41 * should be used in preference to this class. For example:

42 * <pre> {@code

43 * Deque<Integer> stack = new ArrayDeque<Integer>();}</pre>

44 *

45 * @author Jonathan Payne

46 * @since JDK1.0

47 */

48 public

49 class Stack<E> extends Vector<E> {

50 /**

51 * Creates an empty Stack.

52 */

53 public Stack() {

54 }

55

56 /**

57 * Pushes an item onto the top of this stack. This has exactly

58 * the same effect as:

59 * <blockquote><pre>

60 * addElement(item)</pre></blockquote>

61 *

62 * @param item the item to be pushed onto this stack.

63 * @return the <code>item</code> argument.

64 * @see java.util.Vector#addElement

65 */

66 public E push(E item) {

67 addElement(item);

jEdit − Stack.java

68

69 return item;

70 }

71

72 /**

73 * Removes the object at the top of this stack and returns that

74 * object as the value of this function.

75 *

76 * @return The object at the top of this stack (the last item

77 * of the <tt>Vector</tt> object).

78 * @throws EmptyStackException if this stack is empty.

79 */

80 public synchronized E pop() {

81 E obj;

82 int len = size();

83

84 obj = peek();

85 removeElementAt(len − 1);

86

87 return obj;

88 }

89

90 /**

91 * Looks at the object at the top of this stack without removing it

92 * from the stack.

93 *

94 * @return the object at the top of this stack (the last item

95 * of the <tt>Vector</tt> object).

96 * @throws EmptyStackException if this stack is empty.

97 */

98 public synchronized E peek() {

99 int len = size();

100

101 if (len == 0)

102 throw new EmptyStackException();

103 return elementAt(len − 1);

104 }

105

106 /**

107 * Tests if this stack is empty.

108 *

109 * @return <code>true</code> if and only if this stack contains

110 * no items; <code>false</code> otherwise.

111 */

112 public boolean empty() {

113 return size() == 0;

114 }

115

116 /**

117 * Returns the 1−based position where an object is on this stack.

118 * If the object <tt>o</tt> occurs as an item in this stack, this

119 * method returns the distance from the top of the stack of the

120 * occurrence nearest the top of the stack; the topmost item on the

121 * stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>

122 * method is used to compare <tt>o</tt> to the

123 * items in this stack.

124 *

125 * @param o the desired object.

126 * @return the 1−based position from the top of the stack where

127 * the object is located; the return value <code>−1</code>

128 * indicates that the object is not on the stack.

129 */

130 public synchronized int search(Object o) {

131 int i = lastIndexOf(o);

132

133 if (i >= 0) {

134 return size() − i;

jEdit − Stack.java

135 }

136 return −1;

137 }

138

139 /** use serialVersionUID from JDK 1.0.2 for interoperability */

140 private static final long serialVersionUID = 1224463164541339165L;

141 }

142

