JjEdit - Stack. java

1 /*

2 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

4 *

5 * This code is free software; you can redistribute it and/or modify it

6 * under the terms of the GNU General Public License version 2 only, as

7 * published by the Free Software Foundation. Oracle designates this

8 * particular file as subject to the "Classpath" exception as provided

9 * by Oracle in the LICENSE file that accompanied this code.

10 *

11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).

16 *

17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

20 *

21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.

24 */

25

26 package java.util;

27

28  /**

29 * The <code>Stack</code> class represents a last-in-first-out

30 * (LIFO) stack of objects. It extends class <tt>Vector</tt> with five

31 * operations that allow a vector to be treated as a stack. The usual

32 * <tt>push</tt> and <tt>pop</tt> operations are provided, as well as a

33 * method to <tt>peek</tt> at the top item on the stack, a method to test
34 * for whether the stack is <tt>empty</tt>, and a method to <tt>search</tt>
35 * the stack for an item and discover how far it is from the top.

36 * <p>

37 * When a stack is first created, it contains no items.

38 *

39 * <p>A more complete and consistent set of LIFO stack operations is

40 * provided by the {@link Deque} interface and its implementations, which
41 * should be used in preference to this class. For example:

42 * <pre> {@code

43 * Deque<Integer> stack = new ArrayDeque<Integer> ();}</pre>

44 *

45 * @author Jonathan Payne
46 * @since JDK1.0

47 */

48 public

49 class Stack<E> extends Vector<kE> {

50 /**

51 * Creates an empty Stack.

52 */

53 public Stack () {

54 }

55

56 /**

57 * Pushes an item onto the top of this stack. This has exactly
58 * the same effect as:

59 * <blockquote><pre>

60 * addElement (item) </pre></blockquote>

61 *

62 * @param item the item to be pushed onto this stack.
63 * @return the <code>item</code> argument.

64 * @see java.util.Vector#addElement

65 */

66 public E push(E item) {

67 addElement (item);
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*

/
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*/

public synchronized E pop () {
E obj;
int len = size();

*

/

£k o % F ot

*

*/

public synchronized E peek() {

/**

*
*
*
*

*/

public boolean empty () {

}

*

/

O T S R I .

*

*/

return item;
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Removes the object at the top of this stack and returns that
object as the value of this function.

@return The object at the top of this stack (the last item
of the <tt>Vector</tt> object).

@throws EmptyStackException

obj = peek();

removeElementAt (len = 1);

return obj;

if this stack is empty.

Looks at the object at the top of this stack without removing it

from the stack.

@return the object at the top of this stack (the last item
of the <tt>Vector</tt> object).

@throws EmptyStackException

int len = size();

if (len == 0)

if this stack is empty.

throw new EmptyStackException();

return elementAt (len - 1);

Tests if this stack is empty.

@return <code>true</code> if and only if this stack contains
<code>false</code> otherwise.

no items;

return size() ==

0;

Returns the l-based position where an object is on this stack.

If the object <tt>o</tt> occurs as an item in this stack, this

method returns the distance from the top of the stack of the
occurrence nearest the top of the stack; the topmost item on the
stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>
method is used to compare <tt>o</tt> to the

items in this stack.

@param o the desired object.

@return the l-based position from the top of the stack where
the object is located; the return value <code>-1</code>
indicates that the object is not on the stack.

public synchronized int search(Object o) {

int 1 = lastIndexOf (0);

if (i >= 0) {
return size ()

i;



135 }

136 return -1;

137 }

138

139 /** use serialVersionUID from JDK 1.0.2 for interoperability */
140 private static final long serialVersionUID = 1224463164541339165L;
141}

142



