JjEdit - Stack. java

1 /*

2 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

4 *

5 * This code is free software; you can redistribute it and/or modify it

6 * under the terms of the GNU General Public License version 2 only, as

7 * published by the Free Software Foundation. Oracle designates this

8 * particular file as subject to the "Classpath" exception as provided

9 * by Oracle in the LICENSE file that accompanied this code.

10 *

11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).

16 *

17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

20 *

21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.

24 */

25

26 package java.util;

27

28 /**

29 * The <code>Stack</code> class represents a last-in-first-out

30 * (LIFO) stack of objects. It extends class <tt>Vector</tt> with five

31 * operations that allow a vector to be treated as a stack. The usual

32 * <tt>push</tt> and <tt>pop</tt> operations are provided, as well as a

33 * method to <tt>peek</tt> at the top item on the stack, a method to test
34 * for whether the stack is <tt>empty</tt>, and a method to <tt>search</tt>
35 * the stack for an item and discover how far it is from the top.

36 * <p>

37 * When a stack is first created, it contains no items.

38 *

39 * <p>A more complete and consistent set of LIFO stack operations is

40 * provided by the {@link Deque} interface and its implementations, which
41 * should be used in preference to this class. For example:

42 * <pre> {@code

43 * Deque<Integer> stack = new ArrayDeque<Integer> ();}</pre>

44 *

45 * @author Jonathan Payne
46 * @since JDK1.0

47 */

48 public

49 class Stack<E> extends Vector<kE> {

50 /**

51 * Creates an empty Stack.

52 */

53 public Stack () {

54 }

55

56 /**

57 * Pushes an item onto the top of this stack. This has exactly
58 * the same effect as:

59 * <blockquote><pre>

60 * addElement (item) </pre></blockquote>

61 *

62 * @param item the item to be pushed onto this stack.
63 * @return the <code>item</code> argument.

64 * @see java.util.Vector#addElement

65 */

66 public E push(E item) {

67 addElement (item);

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

}

*

/

* ok X X

* ok

*/

public synchronized E pop () {
E obj;
int len = size();

*

/

£k o % F ot

*

*/

public synchronized E peek() {

/**

*
*
*
*

*/

public boolean empty () {

}

*

/

O T S R I .

*

*/

return item;

JjEdit - Stack. java

Removes the object at the top of this stack and returns that
object as the value of this function.

@return The object at the top of this stack (the last item
of the <tt>Vector</tt> object).

@throws EmptyStackException

obj = peek();

removeElementAt (len = 1);

return obj;

if this stack is empty.

Looks at the object at the top of this stack without removing it

from the stack.

@return the object at the top of this stack (the last item
of the <tt>Vector</tt> object).

@throws EmptyStackException

int len = size();

if (len == 0)

if this stack is empty.

throw new EmptyStackException();

return elementAt (len - 1);

Tests if this stack is empty.

@return <code>true</code> if and only if this stack contains
<code>false</code> otherwise.

no items;

return size() ==

0;

Returns the l-based position where an object is on this stack.

If the object <tt>o</tt> occurs as an item in this stack, this

method returns the distance from the top of the stack of the
occurrence nearest the top of the stack; the topmost item on the
stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>
method is used to compare <tt>o</tt> to the

items in this stack.

@param o the desired object.

@return the l-based position from the top of the stack where
the object is located; the return value <code>-1</code>
indicates that the object is not on the stack.

public synchronized int search(Object o) {

int 1 = lastIndexOf (0);

if (i >= 0) {
return size ()

i;

135 }

136 return -1;

137 }

138

139 /** use serialVersionUID from JDK 1.0.2 for interoperability */
140 private static final long serialVersionUID = 1224463164541339165L;
141}

142

