QO J o U W

W WWwWwwwwdhdhNhNDNDNhDNDNDNDNNDNNRERRERRRERREEF O
O WNEFEF O WOWJO U WNEFE O WOW-Jo Ul b wN ke O

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

~
*

E R T

I R T R N N

EE e S R

JjEdit - Queue. java
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

This code is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 only, as
published by the Free Software Foundation. Oracle designates this
particular file as subject to the "Classpath" exception as provided
by Oracle in the LICENSE file that accompanied this code.

This code is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy is included in the LICENSE file that
accompanied this code).

You should have received a copy of the GNU General Public License version
2 along with this work; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
or visit www.oracle.com if you need additional information or have any
questions.

This file is available under and governed by the GNU General Public
License version 2 only, as published by the Free Software Foundation.
However, the following notice accompanied the original version of this
file:

Written by Doug Lea with assistance from members of JCP JSR-166
Expert Group and released to the public domain, as explained at
http://creativecommons.org/publicdomain/zero/1.0/

package java.util;

/

EE R S S N S S N S R R T e S I N N S S

*

A collection designed for holding elements prior to processing.
Besides basic {@link java.util.Collection Collection} operations,
queues provide additional insertion, extraction, and inspection
operations. Each of these methods exists in two forms: one throws
an exception if the operation fails, the other returns a special
value (either {@code null} or {@code false}, depending on the
operation). The latter form of the insert operation is designed
specifically for use with capacity-restricted {@code Queue}
implementations; in most implementations, insert operations cannot
fail.

<table BORDER CELLPADDING=3 CELLSPACING=1>
<caption>Summary of Queue methods</caption>
<tr>
<td></td>
<td ALIGN=CENTER>Throws exception</td>
<td ALIGN=CENTER>Returns special value</td>
</tr>
<tr>
<td>Insert</td>
<td>{@link Queue#add add(e) }</td>
<td>{@1link Queuefoffer offer (e) }</td>
</tr>
<tr>
<td>Remove</td>
<td>{@link Queue#remove remove () }</td>
<td>{@link Queue#poll poll () }</td>
</tr>
<tr>

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

L . S T S S I S S N N S R e S S S N N S S S R i SR S

O

E R T

* ok ok X %

* X %

JjEdit - Queue. java
<td>Examine</td>
<td>{@link Queue#element element () }</td>
<td>{@link Queue#peek peek () }</td>
</tr>
</table>

<p>Queues typically, but do not necessarily, order elements in a
FIFO (first-in-first-out) manner. Among the exceptions are
priority queues, which order elements according to a supplied
comparator, or the elements’ natural ordering, and LIFO queues (or
stacks) which order the elements LIFO (last—-in-first-out).
Whatever the ordering used, the head of the queue is that
element which would be removed by a call to {@link #remove() } or
{@link #poll()}. In a FIFO queue, all new elements are inserted at
the tail of the queue. Other kinds of queues may use
different placement rules. Every {@code Queue} implementation
must specify its ordering properties.

<p>The {@link #offer offer} method inserts an element if possible,

otherwise returning {@code false}. This differs from the {@link
java.util.Collection#add Collection.add} method, which can fail to
add an element only by throwing an unchecked exception. The

{@code offer} method is designed for use when failure is a normal,
rather than exceptional occurrence, for example, in fixed-capacity
(or "boundedé") gqueues.

<p>The {@link #remove ()} and {@link #poll ()} methods remove and
return the head of the gueue.

Exactly which element is removed from the queue is a

function of the queue’s ordering policy, which differs from
implementation to implementation. The {@code remove ()} and
{@code poll()} methods differ only in their behavior when the
queue 1s empty: the {@code remove ()} method throws an exception,
while the {@code poll ()} method returns {@code null}.

<p>The {@link #element ()} and {@link #peek ()} methods return, but do
not remove, the head of the queue.

<p>The {@code Queue} interface does not define the <i>blocking queue
methods</i>, which are common in concurrent programming. These methods,
which wait for elements to appear or for space to become available, are
defined in the {@link java.util.concurrent.BlockingQueue} interface, which
extends this interface.

<p>{@code Queue} implementations generally do not allow insertion
of {@code null} elements, although some implementations, such as
{@link LinkedList}, do not prohibit insertion of {Q@code null}.
Even in the implementations that permit it, {@code null} should
not be inserted into a {@code Queue}, as {(@code null} is also
used as a special return value by the {(@code poll} method to
indicate that the queue contains no elements.

<p>{@code Queue} implementations generally do not define
element-based versions of methods {@code equals} and

{@code hashCode} but instead inherit the identity based versions
from class {@code Object}, because element-based equality is not
always well-defined for queues with the same elements but different
ordering properties.

<p>This interface is a member of the

Java Collections Framework.

@see java.util.Collection
@see LinkedList
@see PriorityQueue

JjEdit - Queue. java

135 * @see java.util.concurrent.LinkedBlockingQueue

136 * @see java.util.concurrent.BlockingQueue

137 * @see java.util.concurrent.ArrayBlockingQueue

138 * @see java.util.concurrent.LinkedBlockingQueue

139 * @see java.util.concurrent.PriorityBlockingQueue

140 * @since 1.5

141 * Q@author Doug Lea

142 * @param <E> the type of elements held in this collection

143 */

144 public interface Queue<E> extends Collection<E> {

145 /**

146 * Inserts the specified element into this queue if it is possible to do so
147 * immediately without violating capacity restrictions, returning

148 * {@code true} upon success and throwing an {@code TIllegalStateException}
149 * i1if no space 1is currently available.

150 *

151 * @param e the element to add

152 * @return {@code true} (as specified by {@link Collection#add})

153 * @throws IllegalStateException if the element cannot be added at this
154 * time due to capacity restrictions

155 * @throws ClassCastException if the class of the specified element
156 * prevents it from being added to this queue

157 * @throws NullPointerException if the specified element is null and
158 * this queue does not permit null elements

159 * @throws IllegalArgumentException if some property of this element
160 * prevents it from being added to this queue

161 */

162 boolean add(E e);

163

164 /**

165 * Inserts the specified element into this queue if it is possible to do
166 * so immediately without violating capacity restrictions.

167 * When using a capacity-restricted queue, this method is generally
168 * preferable to {@link #add}, which can fail to insert an element only
169 * by throwing an exception.

170 *

171 * @param e the element to add

172 * @return {@code true} if the element was added to this queue, else
173 * {@code false}

174 * @throws ClassCastException if the class of the specified element
175 * prevents it from being added to this queue

176 * @throws NullPointerException if the specified element is null and
177 * this queue does not permit null elements

178 * @throws IllegalArgumentException if some property of this element
179 * prevents it from being added to this queue

180 */

181 boolean offer(E e);

182

183 /**

184 * Retrieves and removes the head of this queue. This method differs
185 * from {@link #poll poll} only in that it throws an exception if this
186 * queue 1is empty.

187 *

188 * @return the head of this queue

189 * @throws NoSuchElementException if this queue is empty

190 */

191 E remove();

192

193 /x*

194 * Retrieves and removes the head of this queue,

195 * or returns {@code null} if this queue is empty.

196 *

197 * @return the head of this queue, or {€code null} if this queue is empty
198 */

199 E poll();

200

201 /

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

if this queue is empty.

@return the head of this queue
@throws NoSuchElementException i1f this queue is empty
/

E element();

* ook ok X ok ok X

/**
* Retrieves, but does not remove, the head of this queue,

* or returns {lcode null} if this queue is empty.
*

* @return the head of this queue, or {lcode null} if this queue
*/
E peek();

Retrieves, but does not remove, the head of this queue. This method
differs from {@link #peek peek} only in that it throws an exception

is empty

