
jEdit − Queue.java

1 /*

2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

3 *

4 * This code is free software; you can redistribute it and/or modify it

5 * under the terms of the GNU General Public License version 2 only, as

6 * published by the Free Software Foundation. Oracle designates this

7 * particular file as subject to the "Classpath" exception as provided

8 * by Oracle in the LICENSE file that accompanied this code.

9 *

10 * This code is distributed in the hope that it will be useful, but WITHOUT

11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

13 * version 2 for more details (a copy is included in the LICENSE file that

14 * accompanied this code).

15 *

16 * You should have received a copy of the GNU General Public License version

17 * 2 along with this work; if not, write to the Free Software Foundation,

18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110−1301 USA.

19 *

20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA

21 * or visit www.oracle.com if you need additional information or have any

22 * questions.

23 */

24

25 /*

26 * This file is available under and governed by the GNU General Public

27 * License version 2 only, as published by the Free Software Foundation.

28 * However, the following notice accompanied the original version of this

29 * file:

30 *

31 * Written by Doug Lea with assistance from members of JCP JSR−166

32 * Expert Group and released to the public domain, as explained at

33 * http://creativecommons.org/publicdomain/zero/1.0/

34 */

35

36 package java.util;

37

38 /**

39 * A collection designed for holding elements prior to processing.

40 * Besides basic {@link java.util.Collection Collection} operations,

41 * queues provide additional insertion, extraction, and inspection

42 * operations. Each of these methods exists in two forms: one throws

43 * an exception if the operation fails, the other returns a special

44 * value (either {@code null} or {@code false}, depending on the

45 * operation). The latter form of the insert operation is designed

46 * specifically for use with capacity−restricted {@code Queue}

47 * implementations; in most implementations, insert operations cannot

48 * fail.

49 *

50 * <table BORDER CELLPADDING=3 CELLSPACING=1>

51 * <caption>Summary of Queue methods</caption>

52 * <tr>

53 * <td></td>

54 * <td ALIGN=CENTER>Throws exception</td>

55 * <td ALIGN=CENTER>Returns special value</td>

56 * </tr>

57 * <tr>

58 * <td>Insert</td>

59 * <td>{@link Queue#add add(e)}</td>

60 * <td>{@link Queue#offer offer(e)}</td>

61 * </tr>

62 * <tr>

63 * <td>Remove</td>

64 * <td>{@link Queue#remove remove()}</td>

65 * <td>{@link Queue#poll poll()}</td>

66 * </tr>

67 * <tr>

jEdit − Queue.java

68 * <td>Examine</td>

69 * <td>{@link Queue#element element()}</td>

70 * <td>{@link Queue#peek peek()}</td>

71 * </tr>

72 * </table>

73 *

74 * <p>Queues typically, but do not necessarily, order elements in a

75 * FIFO (first−in−first−out) manner. Among the exceptions are

76 * priority queues, which order elements according to a supplied

77 * comparator, or the elements’ natural ordering, and LIFO queues (or

78 * stacks) which order the elements LIFO (last−in−first−out).

79 * Whatever the ordering used, the head of the queue is that

80 * element which would be removed by a call to {@link #remove() } or

81 * {@link #poll()}. In a FIFO queue, all new elements are inserted at

82 * the tail of the queue. Other kinds of queues may use

83 * different placement rules. Every {@code Queue} implementation

84 * must specify its ordering properties.

85 *

86 * <p>The {@link #offer offer} method inserts an element if possible,

87 * otherwise returning {@code false}. This differs from the {@link

88 * java.util.Collection#add Collection.add} method, which can fail to

89 * add an element only by throwing an unchecked exception. The

90 * {@code offer} method is designed for use when failure is a normal,

91 * rather than exceptional occurrence, for example, in fixed−capacity

92 * (or "bounded") queues.

93 *

94 * <p>The {@link #remove()} and {@link #poll()} methods remove and

95 * return the head of the queue.

96 * Exactly which element is removed from the queue is a

97 * function of the queue’s ordering policy, which differs from

98 * implementation to implementation. The {@code remove()} and

99 * {@code poll()} methods differ only in their behavior when the

100 * queue is empty: the {@code remove()} method throws an exception,

101 * while the {@code poll()} method returns {@code null}.

102 *

103 * <p>The {@link #element()} and {@link #peek()} methods return, but do

104 * not remove, the head of the queue.

105 *

106 * <p>The {@code Queue} interface does not define the <i>blocking queue

107 * methods</i>, which are common in concurrent programming. These methods,

108 * which wait for elements to appear or for space to become available, are

109 * defined in the {@link java.util.concurrent.BlockingQueue} interface, which

110 * extends this interface.

111 *

112 * <p>{@code Queue} implementations generally do not allow insertion

113 * of {@code null} elements, although some implementations, such as

114 * {@link LinkedList}, do not prohibit insertion of {@code null}.

115 * Even in the implementations that permit it, {@code null} should

116 * not be inserted into a {@code Queue}, as {@code null} is also

117 * used as a special return value by the {@code poll} method to

118 * indicate that the queue contains no elements.

119 *

120 * <p>{@code Queue} implementations generally do not define

121 * element−based versions of methods {@code equals} and

122 * {@code hashCode} but instead inherit the identity based versions

123 * from class {@code Object}, because element−based equality is not

124 * always well−defined for queues with the same elements but different

125 * ordering properties.

126 *

127 *

128 * <p>This interface is a member of the

129 *

130 * Java Collections Framework.

131 *

132 * @see java.util.Collection

133 * @see LinkedList

134 * @see PriorityQueue

jEdit − Queue.java

135 * @see java.util.concurrent.LinkedBlockingQueue

136 * @see java.util.concurrent.BlockingQueue

137 * @see java.util.concurrent.ArrayBlockingQueue

138 * @see java.util.concurrent.LinkedBlockingQueue

139 * @see java.util.concurrent.PriorityBlockingQueue

140 * @since 1.5

141 * @author Doug Lea

142 * @param <E> the type of elements held in this collection

143 */

144 public interface Queue<E> extends Collection<E> {

145 /**

146 * Inserts the specified element into this queue if it is possible to do so

147 * immediately without violating capacity restrictions, returning

148 * {@code true} upon success and throwing an {@code IllegalStateException}

149 * if no space is currently available.

150 *

151 * @param e the element to add

152 * @return {@code true} (as specified by {@link Collection#add})

153 * @throws IllegalStateException if the element cannot be added at this

154 * time due to capacity restrictions

155 * @throws ClassCastException if the class of the specified element

156 * prevents it from being added to this queue

157 * @throws NullPointerException if the specified element is null and

158 * this queue does not permit null elements

159 * @throws IllegalArgumentException if some property of this element

160 * prevents it from being added to this queue

161 */

162 boolean add(E e);

163

164 /**

165 * Inserts the specified element into this queue if it is possible to do

166 * so immediately without violating capacity restrictions.

167 * When using a capacity−restricted queue, this method is generally

168 * preferable to {@link #add}, which can fail to insert an element only

169 * by throwing an exception.

170 *

171 * @param e the element to add

172 * @return {@code true} if the element was added to this queue, else

173 * {@code false}

174 * @throws ClassCastException if the class of the specified element

175 * prevents it from being added to this queue

176 * @throws NullPointerException if the specified element is null and

177 * this queue does not permit null elements

178 * @throws IllegalArgumentException if some property of this element

179 * prevents it from being added to this queue

180 */

181 boolean offer(E e);

182

183 /**

184 * Retrieves and removes the head of this queue. This method differs

185 * from {@link #poll poll} only in that it throws an exception if this

186 * queue is empty.

187 *

188 * @return the head of this queue

189 * @throws NoSuchElementException if this queue is empty

190 */

191 E remove();

192

193 /**

194 * Retrieves and removes the head of this queue,

195 * or returns {@code null} if this queue is empty.

196 *

197 * @return the head of this queue, or {@code null} if this queue is empty

198 */

199 E poll();

200

201 /**

jEdit − Queue.java

202 * Retrieves, but does not remove, the head of this queue. This method

203 * differs from {@link #peek peek} only in that it throws an exception

204 * if this queue is empty.

205 *

206 * @return the head of this queue

207 * @throws NoSuchElementException if this queue is empty

208 */

209 E element();

210

211 /**

212 * Retrieves, but does not remove, the head of this queue,

213 * or returns {@code null} if this queue is empty.

214 *

215 * @return the head of this queue, or {@code null} if this queue is empty

216 */

217 E peek();

218 }

219

