
CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

DNHI Homework 5 Solutions
Trees

Problem 1

For each of the following trees state what kind of a tree it is (check all that apply).

1) 2) 3)

4) 5) 6)

Tree # Not a tree General tree Binary tree Binary search tree

1 x x x

2 x x x

3 x

4 x x

5 x

6 x x x

Problem 2

Specify inorder, preorder and postorder traversals of the fourth tree in Problem 1 and the original tree in Problem 3.

1

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

Tree from problem 1, part 4:
Inorder traversal: 3, 5, 10, 21, 13, 16, 17, 5, 20, 23, 25, 27
Preorder traversal: 17, 10, 5, 3, 13, 21, 16, 25, 20, 5, 23, 27
Postorder traversal: 3, 5, 21, 16, 13, 10, 5, 23, 20, 27, 25, 17

Tree from problem 3:
Inorder traversal: 7, 10, 12, 15, 17, 25, 32, 39, 42, 55
Preorder traversal: 25, 10, 7, 15, 12, 17, 39, 32, 55, 42
Postorder traversal: 7, 12, 17, 15, 10, 32, 42, 55, 39, 25

Problem 3

Starting with the binary search tree shown below, show what the tree will look like after each of the following operations. Assume that remove method
uses the predecessor when applicable. For each step modify the tree that results from the previous step (NOT the original tree).

1. insert(21) 25

39

55

42

32

10

15

17

21

12

7

2. insert(8) 25

39

55

42

32

10

15

17

21

12

7

8

3. insert(30) 25

39

55

42

32

30

10

15

17

21

12

7

8

4. insert(35) 25

39

55

42

32

3530

10

15

17

21

12

7

8

5. remove(17) 25

39

55

42

32

3530

10

15

2112

7

8

6. remove(7) 25

39

55

42

32

3530

10

15

2112

8

7. remove(39) 25

35

55

42

32

30

10

15

2112

8

2

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

8. insert(60) 25

35

55

6042

32

30

10

15

2112

8

9. remove(25) 21

35

55

6042

32

30

10

15

12

8

Problem 4

Implement an inorder traversal of a binary tree (this method should work for binary search tree as well) that uses iterative approach. Your method
should be a method of a binary tree class. You can assume that there is a private data field called root that points to the root of the tree. You may specify
this method using pseudocode, but make sure you are specific. You can assume that on visiting the node you print its content to the standard output.

What changes would you have to make to convert this into a postorder traversal?

Here is the pseudocode for an iterative inorder traversal algorithm.

1 inorderTraversal ()
2 if tree is not empty (root is not null)
3 create an empty stack
4 set current to root of this tree
5 set done to false
6 while not done
7 if current is not null
8 push current onto the stack
9 current = current.left
10 else if stack is not empty
11 current = top of the stack
12 remove the item from top of the stack
13 process current
14 current = current.right
15 else
16 set done to true

Here is the pseudocode for an iterative postorder traversal algorithm.

1 postorderTraversal ()
2 if tree is not empty (root is not null)
3 create an empty stack
4 set current to root of this tree
5 set done to false
6 while not done
7 if current is not null
8 if current.right is not null
9 push current.right onto the stack
10 push current onto the stack
11 current = current.left
12 else if stack is not empty
13 current = top of the stack
14 remove the item from top of the stack
15 if current.right is not null
16 AND stack is not empty
17 AND current.right is equal to the top of the stack
18 swap current and top of the stack elements
19 else
20 process current
21 else
22 set done to true

3

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

Problem 5

Given the following binary search trees, show the structure of the tree after a balancing operation has been performed on it. Assume that when selecting
the middle, we always round down (or perform the integer division).

Mark

Pauline

Stefan

Tom

Wanda

Frank

Darren

Carl

Barbara

Amy

Left tree:

1) perform inorder traversal to obtain a list
index: 0 1 2 3 4 5 6 7 8 9 10 11 12
value: 7 10 11 12 15 17 19 25 32 39 42 45 55

2) use the recursive algorithm that picks middle of the array element to add to the tree and then, middles of the middles, etc.

19

39

45

5542

25

32

11

15

1712

7

10

Right tree:

1) perform inorder traversal to obtain a list
index: 0 1 2 3 4 5 6 7 8 9
value: Amy Barbara Carl Darren Frank Mark Pauline Stefan Tom Wanda

2) use the recursive algorithm that picks middle of the array element to add to the tree and then, middles of the middles, etc.

Frank

Stefan

Tom

Wanda

Mark

Pauline

Barbara

Carl

Darren

Amy

Problem 6

Given the trees in Problem 5, show their preorder and postorder traversals.

4

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

Left tree:
Preorder traversal: 25, 10, 7, 15, 12, 11, 17, 19, 39, 32, 55, 42, 45
Postorder traversal: 7, 11, 12, 19, 17, 15, 10, 32, 45, 42, 55, 39, 25

Right tree:
Preorder traversal: Mark, Frank, Darren, Carl, Barbara, Amy, Pauline, Stefan, Wanda, Tom
Postorder traversal: Any, Barbara, Carl, Darren, Frank, Tom, Wanda, Stefan, Pauline, Mark

Problem 7

Given the left tree in Problem 5, show the tree after the following operations. Assume that remove operations use the successor to replace a removed
node when appropriate.

1. insert(14) 25

39

55

42

45

32

10

15

17

19

12

1411

7

2. insert(33) 25

39

55

42

45

32

33

10

15

17

19

12

1411

7

3. insert(35) 25

39

55

42

45

32

33

35

10

15

17

19

12

1411

7

4. remove(39) 25

42

55

45

32

33

35

10

15

17

19

12

1411

7

5

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

5. remove(10) 25

42

55

45

32

33

35

11

15

17

19

12

14

7

6. insert(16) 25

42

55

45

32

33

35

11

15

17

1916

12

14

7

7. remove(25) 32

42

55

45

33

35

11

15

17

1916

12

14

7

Problem 7

Write a method of a binary tree that determines the size of the tree. You can write pseudocode. You cannot assume that there is a data field storing the
size of the tree.

1 int size ()
2 return size (head)
3

4 int size (Node n)
5 if n == null
6 return 0
7 else return 1 + size (n.left) + size (n.right)
8

Problem 8

Write a method of a binary tree that determines the number of leaves in the tree. You can write pseudocode.

1 int countLeaves ()
2 return countLeaves (head)
3

4 int countLeaves (Node n)
5 if n == null // called with null , don ’t count

6 return 0
7 if n.left == null && n.right == null // we have a leaf

8 return 1
9 else return countLeaves (n.left) + countLeaves (n.right)
10

6

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

Problem 9

Draw a binary tree for which the inorder and preorder traversals are as follows:

inorder: F E D B A C

preorder: B E F D C A

B

C

A

E

DF

Problem 10

Given a node in a binary tree, write a recursive method that computes the height of that node. The nodes do not store any height information. You may
use pseudocode. The height of a node is the number of edges from the node to the deepest leaf.

1 int height (Node n)
2 if n == null
3 return -1
4 else
5 return 1 + max(height(n.left), height(n.right))
6

Problem 11

Given a binary tree with 3 levels (level 0, level 1 and level 2) what is the largest number of nodes that the tree may contain? what is the smallest number
of nodes that the tree may contain?

largest: full tree with 7 nodes
smallest: 3 nodes (linked list)

Problem 12

Write a method of a binary (search) tree class that returns the sum of all the numbers stored in the nodes. Write another method that returns the sum of
the numbers stored in the leaf-nodes. Write another method that returns the sum of the numbers stored at even numbered levels (assume that the root is
at level 0, which is even).

Assume that the nodes store integers.

1 int sum ()
2 return sum (root)
3

4 int sum (Node n)
5 if n == null
6 return 0
7 else
8 return n.value + sum(n.left) + sum (n.right)
9

1 int sumOfLeaves ()
2 if root == null
3 return 0
4 if root.left == null && root.right == null
5 return root.value
6 return sumOfLeaves (root)
7

7

CSCI-UA 102
DNHI Homework 5

Joanna Klukowska
joannakl@cs.nyu.edu

8 int sumOfLeaves (Node n)
9 if n == null
10 return 0
11 if n.left == null && n.right == null
12 return n.value
13 else
14 return sumOfLeaves(n.left) + sumOfLeaves (n.right)
15

1 int sumOfEvenLevels ()
2 return sumOfEvenLevels (root, true)
3

4 int sumOfEvenLevels (Node n, boolean addLevel)
5 if n == null
6 return 0
7 if addLevel
8 return n.value + sumOfLeaves(n.left, !addLevel) + sumOfLeaves (n.right, !addLevel)
9 else
10 return sumOfLeaves(n.left, !addLevel) + sumOfLeaves (n.right, !addLevel)
11

Problem 13

Write a method of a binary search tree class that converts the tree to its mirror image (i.e., swaps left and right child for each node). Is the resulting tree
a binary search tree?

1 void mirror ()
2 mirror (root)
3

4 void mirror (Node n)
5 if n == null
6 return
7 else
8 Node tmp = n.left
9 n.left = n.right
10 n.right = tmp
11 mirror (n.right)
12 mirror (n.left)
13

Problem 14

Given a sorted array (increasing order) of integers, write an algorithm that creates a binary search tree of minimal height.

1

2 isertNodes(listOfValues, first, last)
3

4 if (first == last)
5 insert(listOfValues[first])
6

7 else if (first+1 == last)
8 insert(listOfValues[first])
9 insert(listOfValues[last])
10

11 else
12 mid = (first + last) / 2
13 insert (listOfValues[mid])
14 insertNodes (first, mid-1)
15 insertNodes (mid+1, last)

8

