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1 Priority Queues and Heaps

A few weeks ago we looked at queue data structure. In a typical queue, the items that arrive
at the queue first are removed from the queue first (first in, first out, or FIFO, structure).
Our typical queue is a special case of a priority queue in which the priority is decided based
on time of arrival. In more general priority queue, the priority of an element can be decided
based on anything. The next element to be removed (or processed, or served, etc) is the
element whose priority is highest.

Examples:

e Boarding the plane is done according to a (partial) priority queue - the passengers who
paid the most for their tickets board first (they have higher priority).

e Job scheduling on a processor - all computer processes have some priority assigned to
them and the ones with highest priority get the time on a processor first. The assign-
ment of priorities for computer processes is a complicated and challenging problem -
you’ll see more about it in your operating systems course.

e Registering for classes on Albert (partial priority queue) - the seniors get to register
sooner than the other students.

1.1 Priority Queue Interface

A sample priority queue interface may look as follows (it is practically the same as the
interface provided by the regular queue). We will eventually modify it to explicitly represent
priorities, but this is not essential just now.

boolean isFull( ) returns true if the priority queue is full (this may never hap-
pen), false otherwise

boolean isEmpty( ) returns true if the priority queue is empty, false otherwise
void enqueue( T element) adds another element to the queue

T dequeue( ) removes and returns the element with highest priority from
the queue (ties are resolved arbitrarily and are implementa-
tion dependent)

1.2 Implementation

Throughout the semester, we discussed several different structures that can be used for
implementation of a priority queue. Below we review different options.
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An Array-based Sorted List

enqueue () operation can be implemented using binary search to find the correct locations -
this can be done in O(log;N) time, but then other elements in the array need to be shifted to
accomodate the new element - this makes it O(N)

dequeue () operation is simple as we need to remove the item with highest priority which is
at the front of the list which requires only constant time O(1) (well, assuming that we do not
insist on keeping the front of the queue at the index 0 of the array - the front of the queue
needs to be able to move through the array, otherwise the dequeue operation becomes O(N)

)

In addition we need to introduce finite size or resize the array when it becomes full.

A Reference-based Sorted List

enqueue () operation has to traverse through the list in order to find the correct place to
insert the element, that is O(IN) time

dequeue () operation requires removing the head of the list which is constant time operation,
o)

The queue can grow in size indefinitely (well, within our memory limitations).

A Binary Search Tree
enqueue () operation is always proportional to the height of the tree
dequeue () operation is always proportional to the height of the tree

This is good and bad. If the tree is nice and bushy, that this means that we can perform both
enqueue and dequeue in O(log,N) time. But the binary search trees can become unbalance
and the true worst case is O(N) for both operations. We could use a self-balancing binary
search tree, but there is something better.

The queue can grow in size indefinitely (well, within our memory limitations).

1.3 Heaps as Implementation of Priority Queues

Our goal is to find an implementation that guarantees better than O(N) performance on
both enqueue and dequeue operations, even in the worst case. This is where the heap data
structure comes in.

1.3.1 Max-Heap

Max-heap is a complete binary tree with a property that each node contains a value (priority
in our case) that is greater than or equal to the value of its children. When we talk about
heaps, we need to make sure that a heap maintains two properties:

shape property the heap has to be a complete binary tree (a complete binary tree is a binary
tree in which every level, except possibly the last, is completely filled, and all
nodes are as far left as possible),
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order property each node has a value greater than or equal to the values of both of its chil-
dren.

enqueue () operation is always proportional to the height of the tree, but because of the shape
property, the height is always guaranteed to be O(log;N)

dequeue () operation can be done fast by accessing the node at the root of the tree, O(1), but
since we will need to replace that node with something else, it also turns out to be O(log;N)

Both of these running times are guaranteed even in the worst case.

Enqueing an element During enqueue operation, we add the new node as the last el-
ement in the bottom row of the tree. This maintains the shape property (the tree is still
complete), but it may violate the order property. We need to heapify the tree, by moving the
new node up (swapping with the parent node) until its parent is greater than, or equal to it.

Dequeueing an element During the dequeue operation, we remove and return the root
of the tree. But that leaves a hole in the tree. To fill it, we take the rightmost node from
the bottom level of the tree and place it at the root. This preserves the shape property, but
we need to do some work to restore the order property. As with the enqueue, we heapify the
tree by moving the new root down (swapping with the larger of its children) until we find
the position at which both of its children are smaller.

As you remember, in a binary tree (complete or not) the parents have references to the
children, but not the other way around. This means that the heapifying the tree might be a
problem. Well, the heaps are not implemented as trees, they are implemented as arrays. It
is actually much more efficient to implement them as arrays because the heaps are complete
trees and the relationship between index of a parent and its children is easy to establish.
On the other hand, it is much easier to think about the operations performed on the heaps
when we think about them as trees. There is a one-to-one correspondence between an array
and a tree representation of any heap.

1.3.2 Min-Heaps

It is intuitive to think of largest elements at the front of a priority queue because these
are the elements with the highest priority. But often it is the smallest elements that have
higher priority. We can implement a min-heap in exactly same way as the max-heap. The
only difference is that the order property changes to "each node has a value smaller than or
equal to the values of both of its children”.

1.3.3 Using Arrays to Implement Heaps

We can populate an array with values stored in nodes of a complete binary tree by reading
them off from the root one level at a time (this is breadth first search traversal of a tree).
This gives us the following properties:

e the root of a tree is at index 0
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e if an element is not a root, its parent is at position (index-1)/2
e if an element has a left child, the child is at position index*2+1

e if an element has a right child, the child is at position index*2+2

This allows us to move from parent to child and child to parent very quickly (no need to
worry about storing extra references) and, because of the heap property, we do not need to
traverse the entire array to find the right place for a node.

See simulations on the OpenDSA website: http://algoviz.org/OpenDSA/Books/OpenDSA/
html/Heaps.html.

1.4 Java Libraries Implementation of a Priority Queue

Java implements a heap based priority queue in the class PriorityQueue<E>, see http://
docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html for details. You should
also take a look at the actual implementation of this class (this can be downloaded with the
source code for JDK).

The method names are slightly different than what we have been using. The enqueue opera-
tion is provided by add (E element) method and the dequeue operation is provided by pol1()
method.

2 File Compression

When a text file is stored on a computer, each letter is represented by a binary code cor-
responding to that letter. Depending on the file encoding (ASCII or UNICODE), we might
be using anywhere from 1 to 4 bytes per character. The War and Peace text file, for exam-
ple, has 3,226,614 characters, that is over 3MB (and that is if the file uses only 1 byte to
represent each character, i.e., the ASCII encoding).

Do we really need to use all that space to save this file?

We compress files all the time. How can this be done and what does it have to do with data
structures?

In 1952 David Huffman showed that we do not need all the bits to represent the text (well,
I am not sure if he was thinking about bits, but his idea of minimal prefix encoding allows
us to do this). Here is the basic idea.

Use different length of bit sequences to represent different letters. If some letters occur
much more frequently than others, we want to use a very short bit sequence to represent
them. If some letters occur very rarely, then we can afford to use a long sequence of bits to
represent them. The necessary condition for this to work is the existence of a prefix-code:
coding of letters such that no valid code is ever a prefix of another valid code, otherwise we
could not recognize boundaries between letters.

Knowing statistical properties of letters used to produce English text, we can figure out best
bit sequences for each letter. But we can do even better if the sequences are based on specific
text that we want to make "smaller” (i.e., compress).

The method to come up with such encoding (they are not unique) is as follows:
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1. compute frequencies of every single letter occurring in a given text

2. create individual nodes that contain a letter and its frequency (this is a forest of single
nodes of binary trees)

3. create a priority queue of the trees (the priority is based on the frequencies: the lower
frequency, the higher the priority of the tree)

4. as long as the priority queue has more than one tree in it

(a) pick two trees with the smallest frequencies and merge them by creating a new
node and settings its children to the two trees, assign the sum of the frequencies
of the two trees to the new tree

(b) put the new tree back on the priority queue

Once the Huffman tree is complete the actual letters (and their counts) are located at the
leaves. To determine the binary sequences that should be assigned to them, label all the
left children references (edges from parent to its left child) with 0 and all the right children
references (edges from parent to its right child) with 1. For each leaf construct the sequence
by following the edges from the root to the leaf and reading the labels on the edges.

Visualization of building a Huffman tree and establishing the binary sequences can be
found on OpenDSA website: https://opendsa-server.cs.vt.edu/0DSA/Books/Everything/
html/Huffman.html.



https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/Huffman.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/Huffman.html

	1 Priority Queues and Heaps
	1.1 Priority Queue Interface
	1.2 Implementation
	1.3 Heaps as Implementation of Priority Queues
	1.3.1 Max-Heap 
	1.3.2 Min-Heaps
	1.3.3 Using Arrays to Implement Heaps

	1.4 Java Libraries Implementation of a Priority Queue

	2 File Compression

