
For Loops
or count controlled repetition

CORE-UA 109.01, Joanna Klukowska
adapted from slides for CSCI-UA.002 by D. Engle, C. Kapp and J. Versoza

1/34

let's start with an example
Write a program that prints numbers from 0 to 9, each on a new line.

2/34

print("0")
print("1")
print("2")
print("3")
print("4")
print("5")
print("6")
print("7")
print("8")
print("9")

let's start with an example
Write a program that prints numbers from 0 to 9, each on a new line.

3/34

print("0")
print("1")
print("2")
print("3")
print("4")
print("5")
print("6")
print("7")
print("8")
print("9")

for i in range(0,10,1):
 print(i)

let's start with an example
Write a program that prints numbers from 0 to 9, each on a new line.

4/34

print("0")
print("1")
print("2")
print("3")
print("4")
print("5")
print("6")
print("7")
print("8")
print("9")

for i in range(0,10,1):
 print(i)

let's start with an example
Write a program that prints numbers from 0 to 9, each on a new line.

which of the two programs do you prefer?

which of them is easier to write?

would your answer be the same if you needed to write a program that printed values
from 0 to 1000?

5/34

for loop statement

6/34

for num in [1,2,3,4,5]:
 print ("This will print 5 times")

Output:

This will print 5 times
This will print 5 times
This will print 5 times
This will print 5 times
This will print 5 times

examples of for loops

7/34

for num in [1,2,3,4,5]:
 print ("This will print 5 times")

Output:

This will print 5 times
This will print 5 times
This will print 5 times
This will print 5 times
This will print 5 times

primes = [2,3,5,7,11,13,17,19,23,29]
num = 4
for prime in primes:
 print (num, "*", prime,
 "=", num*prime)

Output:

4 * 2 = 8
4 * 3 = 12
4 * 5 = 20
4 * 7 = 28
4 * 11 = 44
4 * 13 = 52
4 * 17 = 68
4 * 19 = 76
4 * 23 = 92
4 * 29 = 116

examples of for loops

8/34

examples of for loops
available_toppings = ['mushrooms', 'olives', 'green peppers',
 'pepperoni', 'pinapple', 'extra cheese']

requested_toppings = ['mushrooms', 'sausage', 'Olives']

for topping in requested_toppings:
 if topping in available_toppings :
 print ('Adding', topping, '.')
 else:
 print ("Sorry, we don't have", topping, ".")

print("\nFinished making your pizza.\nEnjoy!")

Output:

Adding mushrooms .
Sorry, we don't have sausage .
Sorry, we don't have Olives .

Finished making your pizza.
Enjoy!

9/34

syntax

the statements in the loop run multiple times

each time the variable takes on a different value from the list [value1, value2, etc]

on the first iteration variable is equal to value1

on the second iteration variable is equal to value1

on the third iteration variable is equal to etc

10/34

lists in Python
Lists in Python are defined by the square bracket characters [and]. Items in a list are
separated by a comma.

There are several ways of creating a list in Python.

enumeration: simply enumerate values for the list inside square brackets; the values
are separated by commans

grades = ['a', 'b', 'c', 'd', 'f']
primes = [2,3,5,7,11,13,17,19,23,29]
friends = ['Alice', 'John', 'Mary']
random_things = [3.14, 'quiz3', 45, 'long weekend', 6.7]

11/34

lists in Python
Lists in Python are defined by the square bracket characters [and]. Items in a list are
separated by a comma.

There are several ways of creating a list in Python.

enumeration: simply enumerate values for the list inside square brackets; the values
are separated by commans

grades = ['a', 'b', 'c', 'd', 'f']
primes = [2,3,5,7,11,13,17,19,23,29]
friends = ['Alice', 'John', 'Mary']
random_things = [3.14, 'quiz3', 45, 'long weekend', 6.7]

return value from a function: many functions return a list when called; one such
example is the range() function

range(0,10,1) returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 8]
range(0,20,2) returns [0, 2, 4, 6, 8]
range(10) returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 8]
range(-10, 11, 5) returns [-10, -5, 0, 5, 10]

12/34

lists in Python
Lists in Python are defined by the square bracket characters [and]. Items in a list are
separated by a comma.

There are several ways of creating a list in Python.

enumeration: simply enumerate values for the list inside square brackets; the values
are separated by commans

grades = ['a', 'b', 'c', 'd', 'f']
primes = [2,3,5,7,11,13,17,19,23,29]
friends = ['Alice', 'John', 'Mary']
random_things = [3.14, 'quiz3', 45, 'long weekend', 6.7]

return value from a function: many functions return a list when called; one such
example is the range() function

range(0,10,1) returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 8]
range(0,20,2) returns [0, 2, 4, 6, 8]
range(10) returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 8]
range(-10, 11, 5) returns [-10, -5, 0, 5, 10]

What do you think the rules for this range() function are?

13/34

range() function
the range() function lets you dynamically generate lists based on criteria that you
define

well, technically range() function returns an iterable not a list

the for loop does not care which of the two it uses

in any other context, you can create the list out of an iterable using the list()
function, for example list(range(1,10,1))

14/34

range() function
when called with one argument range(n) it returns a list that contains all the
numbers starting from 0 up to (but not including) n

range(5) returns [0, 1, 2, 3, 4]
range(-5) returns [] - an empty list

15/34

range() function
when called with one argument range(n) it returns a list that contains all the
numbers starting from 0 up to (but not including) n

range(5) returns [0, 1, 2, 3, 4]
range(-5) returns [] - an empty list

when called with two argumets range(n1, n2) it returns a list that contains all the
numbers starting from n1 up to (but not including) n2

range(2,7) returns [2, 3, 4, 5, 6]
range(-99, -95) returns [-99, -98, -97, -96]

16/34

range() function
when called with one argument range(n) it returns a list that contains all the
numbers starting from 0 up to (but not including) n

range(5) returns [0, 1, 2, 3, 4]
range(-5) returns [] - an empty list

when called with two argumets range(n1, n2) it returns a list that contains all the
numbers starting from n1 up to (but not including) n2

range(2,7) returns [2, 3, 4, 5, 6]
range(-99, -95) returns [-99, -98, -97, -96]

when called with three arguments range(n1, n2, diff) it returns a list that contains all
the numbers starting from n1 up to (but not including) n2 in increments of diff

range(-10, 11, 5) returns [-10, -5, 0, 5, 10]
range(0, 10, 3) returns [0, 3, 6, 9]
range(1,1000,100) returns [1, 101, 201, 301, 401, 501, 601, 701, 801, 901]
range(0, -10, -2) returns [0, -2, -4, -6, -8]

17/34

range() function
when called with one argument range(n) it returns a list that contains all the
numbers starting from 0 up to (but not including) n

range(5) returns [0, 1, 2, 3, 4]
range(-5) returns [] - an empty list

when called with two argumets range(n1, n2) it returns a list that contains all the
numbers starting from n1 up to (but not including) n2

range(2,7) returns [2, 3, 4, 5, 6]
range(-99, -95) returns [-99, -98, -97, -96]

when called with three arguments range(n1, n2, diff) it returns a list that contains all
the numbers starting from n1 up to (but not including) n2 in increments of diff

range(-10, 11, 5) returns [-10, -5, 0, 5, 10]
range(0, 10, 3) returns [0, 3, 6, 9]
range(1,1000,100) returns [1, 101, 201, 301, 401, 501, 601, 701, 801, 901]
range(0, -10, -2) returns [0, -2, -4, -6, -8]

when called with four arguments ...

it produces an error message:
TypeError: range expected at most 3 arguments, got 4

18/34

write a program that calculates the
squares of the numbers between 1
and 10
the output of this program should
be

num num^2
=============
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

write a program that calculates the
cubes of the even numbers starting
at 20 and going down to 0
the output of this program should
be

num num^3
=============
20 8000
18 5832
16 4096
14 2744
12 1728
10 1000
8 512
6 216
4 64
2 8
0 0

try it yourself

19/34

mixing loops and conditionals
for num in range(1,11,1):
 if num % 2 == 0 :
 print (num, "is even")
 else :
 print (num, "is odd")

what will the above program produce?

20/34

mixing loops and conditionals
for num in range(1,11,1):
 if num % 2 == 0 :
 print (num, "is even")
 else :
 print (num, "is odd")

what will the above program produce?

1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
10 is even

21/34

nesting loops
nested loops are loop that are inside other loops

for num1 in range(1,11,1):
 for num2 in range (1,11,1):
 print (num1*num2,end="\t")
 print()

what will the above program produce?

22/34

nesting loops
nested loops are loop that are inside other loops

for num1 in range(1,11,1):
 for num2 in range (1,11,1):
 print (num1*num2,end="\t")
 print()

what will the above program produce?

Output

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

it's a multiplication table (although the labels for rows and columns are missing)
challenge: modify the program to add labels to each row and column

23/34

using loops to accumulate values
What do you think this program does?

sum = 0

for num in range(1,101):
 sum = sum + num

print (sum)

24/34

using loops to accumulate values
What do you think this program does?

sum = 0

for num in range(1,101):
 sum = sum + num

print (sum)

Output

5050

The program computes the sum of all the numbers from 1 to 100.

We will often talk about variable like sum as an accumulator because we accumulate all
the values from 1 to 100 in sum

25/34

Interaction 1:

How tall do you want this ladder to be? 3
========
| |
========
| |
========
| |

Interaction 2:

How tall do you want this ladder to be?5
========
| |
========
| |
========
| |
========
| |
========
| |

user provided number of repeats
the user can determine the number of times some task is repeated

height = int(input('How tall do you want this ladder to be?'))

for i in range(height):
 print('========\n| |')

the loop is repeated a different number of time dending on the user's response

26/34

Interaction 1:

How tall do you want this ladder to be? 3
========
| |
========
| |
========
| |

Interaction 2:

How tall do you want this ladder to be?5
========
| |
========
| |
========
| |
========
| |
========
| |

user provided number of repeats
the user can determine the number of times some task is repeated

height = int(input('How tall do you want this ladder to be?'))

for i in range(height):
 print('========\n| |')

the loop is repeated a different number of time dending on the user's response

Can you think of a program that performs the same task without using a loop?

27/34

programming challenges

28/34

prime numbers?
Write a program that prompts the user for a positive number. The program should
determine if the number is a prime.

Prime numbers are the numbers that are divisible only by 1 and itself. For example 7 is
prime since the only numbers that divide it (without a remainder) are 1 and 7:

7 / 1 = 7.0 <=== no remainder
7 / 2 = 3.5
7 / 3 = 2.33333333333
7 / 4 = 1.75
7 / 5 = 1.4
7 / 6 = 1.16666666666
7 / 7 = 1.0 <=== no remainder

29/34

average scores
Write a program that allows you to calculate average of your quiz grades. The program
should prompt the user for 5 grades and then compute their average (add all grades
together and divide by 5). Assume that the scores are always between 0 and 10.

Version 2: add verification of the user input, i.e., check if the user entered a score between
zero and 10, and if not, print an error message

30/34

stair steps
Write a program that prints out the following pattern of characters:

++
++++
++++++
++++++++
++++++++++
++++++++++++

Write a program that prints out the following pattern of characters:

 ++
 ++++
 ++++++
 ++++++++
 ++++++++++
++++++++++++

Rewrite the above programs to take the number of rows in the pattern from the user.

31/34

divisibility testing
Write a program that asks the user to enter in an integer.

The program should then find all numbers between 1 and 10,000 that are evenly divisible
by that number.

32/34

fizz buzz
Write a program that prints out numbers 1 to 100 with the following exceptions:

for multiples of three, print out "Fizz" instead of the number
for multiples of five, print out "Buzz" instead of the number
for multiples of both three and five print “FizzBuzz”

Example output on the next slide.

33/34

fizz buzz - output
 1
 2
 Fizz
 4
 Buzz
 Fizz
 7
 8
 Fizz
 Buzz
 11
 Fizz
 13
 14
 FizzBuzz
 16
 ...
 88
 89
 FizzBuzz
 91
 92
 Fizz
 94
 Buzz
 Fizz
 97
 98
 Fizz
 Buzz

34/34

